enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    Even more generally, it holds that a general solution to the Schrödinger equation can be found by taking a weighted sum over a basis of states. A choice often employed is the basis of energy eigenstates, which are solutions of the time-independent Schrödinger equation.

  3. Step potential - Wikipedia

    en.wikipedia.org/wiki/Step_potential

    The time-independent Schrödinger equation for the wave function is ^ = [+ ()] = (), where Ĥ is the Hamiltonian, ħ is the reduced Planck constant, m is the mass, E the energy of the particle. The step potential is simply the product of V 0 , the height of the barrier, and the Heaviside step function : V ( x ) = { 0 , x < 0 V 0 , x ≥ 0 ...

  4. List of quantum-mechanical systems with analytical solutions

    en.wikipedia.org/wiki/List_of_quantum-mechanical...

    which is an eigenvalue equation. Very often, only numerical solutions to the Schrödinger equation can be found for a given physical system and its associated potential energy. However, there exists a subset of physical systems for which the form of the eigenfunctions and their associated energies, or eigenvalues, can be found.

  5. Pöschl–Teller potential - Wikipedia

    en.wikipedia.org/wiki/Pöschl–Teller_potential

    In mathematical physics, a Pöschl–Teller potential, named after the physicists Herta Pöschl [1] (credited as G. Pöschl) and Edward Teller, is a special class of potentials for which the one-dimensional Schrödinger equation can be solved in terms of special functions.

  6. Bloch's theorem - Wikipedia

    en.wikipedia.org/wiki/Bloch's_theorem

    If we apply the time-independent Schrödinger equation to the Bloch wave function we obtain ^ = [(+) + ()] = with boundary conditions = (+) Given this is defined in a finite volume we expect an infinite family of eigenvalues; here is a parameter of the Hamiltonian and therefore we arrive at a "continuous family" of eigenvalues () dependent on ...

  7. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    One particular solution to the time-independent Schrödinger equation is = /, a plane wave, which can be used in the description of a particle with momentum exactly p, since it is an eigenfunction of the momentum operator. These functions are not normalizable to unity (they are not square-integrable), so they are not really elements of physical ...

  8. Stationary state - Wikipedia

    en.wikipedia.org/wiki/Stationary_state

    This is an eigenvalue equation: ^ is a linear operator on a vector space, | is an eigenvector of ^, and is its eigenvalue.. If a stationary state | is plugged into the time-dependent Schrödinger equation, the result is [2] | = | .

  9. Schröder's equation - Wikipedia

    en.wikipedia.org/wiki/Schröder's_equation

    It is used to analyse discrete dynamical systems by finding a new coordinate system in which the system (orbit) generated by h(x) looks simpler, a mere dilation.. More specifically, a system for which a discrete unit time step amounts to x → h(x), can have its smooth orbit (or flow) reconstructed from the solution of the above Schröder's equation, its conjugacy equation.