Search results
Results from the WOW.Com Content Network
When the smaller values tend to be farther away from the mean than the larger values, one has a skew distribution to the left (i.e. there is negative skewness), one may for example select the square-normal distribution (i.e. the normal distribution applied to the square of the data values), [1] the inverted (mirrored) Gumbel distribution, [1 ...
In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing.It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood.
In statistics, a standard normal table, also called the unit normal table or Z table, [1] is a mathematical table for the values of Φ, the cumulative distribution function of the normal distribution.
In statistics, DFFIT and DFFITS ("difference in fit(s)") are diagnostics meant to show how influential a point is in a linear regression, first proposed in 1980. [ 1 ] DFFIT is the change in the predicted value for a point, obtained when that point is left out of the regression:
A matrix, has its column space depicted as the green line. The projection of some vector onto the column space of is the vector . From the figure, it is clear that the closest point from the vector onto the column space of , is , and is one where we can draw a line orthogonal to the column space of .
A way to improve on the Poisson bootstrap, termed "sequential bootstrap", is by taking the first samples so that the proportion of unique values is ≈0.632 of the original sample size n. This provides a distribution with main empirical characteristics being within a distance of O ( n 3 / 4 ) {\displaystyle O(n^{3/4})} . [ 36 ]
Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.