enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gamma ray - Wikipedia

    en.wikipedia.org/wiki/Gamma_ray

    [32] [34] [35] [36] Exceptions to this convention occur in astronomy, where gamma decay is seen in the afterglow of certain supernovas, but radiation from high energy processes known to involve other radiation sources than radioactive decay is still classed as gamma radiation. For example, modern high-energy X-rays produced by linear ...

  3. Delayed nuclear radiation - Wikipedia

    en.wikipedia.org/wiki/Delayed_nuclear_radiation

    Delayed gamma emissions are the most common form of delayed radiation, but are not the only form. It is common for the short-lived isotopes to have delayed emissions of various particles. In these cases, it is commonly called a beta-delayed emission. This is because the decay is delayed until a beta decay takes place.

  4. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    An example is internal conversion, which results in an initial electron emission, and then often further characteristic X-rays and Auger electrons emissions, although the internal conversion process involves neither beta nor gamma decay. A neutrino is not emitted, and none of the electron(s) and photon(s) emitted originate in the nucleus, even ...

  5. Decay energy - Wikipedia

    en.wikipedia.org/wiki/Decay_energy

    gamma ray; beta decay (decay energy is divided between the emitted electron and the neutrino which is emitted at the same time) alpha decay; The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E.

  6. Photodisintegration - Wikipedia

    en.wikipedia.org/wiki/Photodisintegration

    The incoming gamma ray effectively knocks one or more neutrons, protons, or an alpha particle out of the nucleus. [1] The reactions are called (γ,n), (γ,p), and (γ,α), respectively. Photodisintegration is endothermic (energy absorbing) for atomic nuclei lighter than iron and sometimes exothermic (energy releasing) for atomic nuclei heavier ...

  7. Decay heat - Wikipedia

    en.wikipedia.org/wiki/Decay_heat

    Decay heat as fraction of full power for a reactor SCRAMed from full power at time 0, using two different correlations. In a typical nuclear fission reaction, 187 MeV of energy are released instantaneously in the form of kinetic energy from the fission products, kinetic energy from the fission neutrons, instantaneous gamma rays, or gamma rays from the capture of neutrons. [7]

  8. Neutron activation - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation

    An example of this kind of a nuclear reaction occurs in the production of cobalt-60 within a nuclear reactor: The cobalt-60 then decays by the emission of a beta particle plus gamma rays into nickel-60. This reaction has a half-life of about 5.27 years, and due to the availability of cobalt-59 (100% of its natural abundance), this neutron ...

  9. Iodine-123 - Wikipedia

    en.wikipedia.org/wiki/Iodine-123

    Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).