enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  3. Semidefinite programming - Wikipedia

    en.wikipedia.org/wiki/Semidefinite_programming

    A linear programming problem is one in which we wish to maximize or minimize a linear objective function of real variables over a polytope.In semidefinite programming, we instead use real-valued vectors and are allowed to take the dot product of vectors; nonnegativity constraints on real variables in LP (linear programming) are replaced by semidefiniteness constraints on matrix variables in ...

  4. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    The latter point is easy to understand when considering again the scalar equivalent a * x = b, for which the solution x = a^-1 * b would require two operations instead of the more efficient x = b / a. The problem is that generally matrix multiplications are not commutative as the extension of the scalar solution to the matrix case would require:

  5. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...

  6. Comparison of linear algebra libraries - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_linear...

    Free 3-clause BSD: Numerical linear algebra library with long history librsb: Michele Martone C, Fortran, M4 2011 1.2.0 / 09.2016 Free GPL: High-performance multi-threaded primitives for large sparse matrices. Support operations for iterative solvers: multiplication, triangular solve, scaling, matrix I/O, matrix rendering.

  7. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1: ρ ( D − 1 ( L + U ) ) < 1. {\displaystyle \rho (D^{-1}(L+U))<1.} A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally dominant .

  8. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    This reduces the number of matrix additions and subtractions from 18 to 15. The number of matrix multiplications is still 7, and the asymptotic complexity is the same. [6] The algorithm was further optimised in 2017, [7] reducing the number of matrix additions per step to 12 while maintaining the number of matrix multiplications, and again in ...

  9. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Since matrix multiplication forms the basis for many algorithms, and many operations on matrices even have the same complexity as matrix multiplication (up to a multiplicative constant), the computational complexity of matrix multiplication appears throughout numerical linear algebra and theoretical computer science.