Search results
Results from the WOW.Com Content Network
Cyanobacteria are ubiquitous in marine environments and play important roles as primary producers. They are part of the marine phytoplankton, which currently contributes almost half of the Earth's total primary production. [37] About 25% of the global marine primary production is contributed by cyanobacteria. [38]
This page was last edited on 11 December 2024, at 08:10 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The organisms responsible for primary production are called primary producers or autotrophs. Most marine primary production is generated by a diverse collection of marine microorganisms called algae and cyanobacteria. Together these form the principal primary producers at the base of the ocean food chain and produce half of the world's oxygen ...
A clear paleontological window on cyanobacterial evolution opened about 2000 Ma, revealing an already-diverse biota of cyanobacteria. Cyanobacteria remained the principal primary producers of oxygen throughout the Proterozoic Eon (2500–543 Ma), in part because the redox structure of the oceans favored photoautotrophs capable of nitrogen fixation.
Cyanobacteria such as these carry out photosynthesis.Their emergence foreshadowed the evolution of many photosynthetic plants and oxygenated Earth's atmosphere.. Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon (particularly carbon dioxide, CO 2) to organic compounds.
Gross primary production occurs by photosynthesis. This is the main way that primary producers get energy and make it available to other forms of life. Plants, many corals (by means of intracellular algae), some bacteria (cyanobacteria), and algae do this. During photosynthesis, primary producers receive energy from the sun and use it to ...
In the microbial food web, bacteria play a crucial role in breaking down organic materials and recycling nutrients. They transform DOC into bacterial biomass so that protists and other higher trophic levels can consume it. Additionally, bacteria take part in the nitrogen and carbon cycles, among other biogeochemical cycles. [4] Algae
There are multiple hypotheses for how oxygenic photosynthesis evolved. The loss hypothesis states that PSI and PSII were present in anoxygenic ancestor cyanobacteria from which the different branches of anoxygenic bacteria evolved. [5] The fusion hypothesis states that the photosystems merged later through horizontal gene transfer. [5]