Search results
Results from the WOW.Com Content Network
An example of the relationship between sample size and power levels. Higher power requires larger sample sizes. Statistical power may depend on a number of factors. Some factors may be particular to a specific testing situation, but in normal use, power depends on the following three aspects that can be potentially controlled by the practitioner:
G*Power is a free-to use software used to calculate statistical power. The program offers the ability to calculate power for a wide variety of statistical tests including t-tests , F-tests , and chi-square-tests , among others.
Power, sample size, and the detectable alternative hypothesis are interrelated. The user specifies any two of these three quantities and the program derives the third. A description of each calculation, written in English, is generated and may be copied into the user's documents.
In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a relative change in the other quantity proportional to the change raised to a constant exponent: one quantity varies as a power of another. The change is independent of the initial size of those quantities.
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
¯ = sample mean of differences d 0 {\displaystyle d_{0}} = hypothesized population mean difference s d {\displaystyle s_{d}} = standard deviation of differences