Search results
Results from the WOW.Com Content Network
Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units, it is measured in m −3. As with any density, in principle it can depend on position. However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material.
The maximum number of electrons that can be placed in a subshell is given by 2(2 l + 1). This gives two electrons in an s subshell, six electrons in a p subshell, ten electrons in a d subshell and fourteen electrons in an f subshell.
The maximum number of electrons in any shell is 2n 2, where n is the principal quantum number. The maximum number of electrons in a subshell is equal to 2(2 l + 1), where the azimuthal quantum number l is equal to 0, 1, 2, and 3 for s, p, d, and f subshells, so that the maximum numbers of electrons are 2, 6, 10, and 14 respectively.
In quantum chemical calculations, the electron density, ρ(r), is a function of the coordinates r, defined so ρ(r)dr is the number of electrons in a small volume dr. For closed-shell molecules, ρ ( r ) {\displaystyle \rho (\mathbf {r} )} can be written in terms of a sum of products of basis functions, φ:
In chemistry, electron counting is a formalism for assigning a number of valence electrons to individual atoms in a molecule. It is used for classifying compounds and for explaining or predicting their electronic structure and bonding. [1] Many rules in chemistry rely on electron-counting:
The multiplicity is also equal to the number of unpaired electrons plus one. [4] Therefore, the term with lowest energy is also the term with maximum S {\displaystyle S\,} and maximum number of unpaired electrons with equal spin angular momentum (either +1/2 or -1/2).
This is equal to the number of electrons in its valence shell if all the valence shell electrons are used for bonding. If they are not, the remainder will form non-bonding electron pairs, usually known as lone pairs. The valence of a bond, S, is defined as the number of electron pairs forming the bond. In general this is not an integral number.
Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2 Ne, 10, neon : 1s 2 2s 2 2p 6 Ar, 18, argon : 1s 2 2s 2 2p 6 3s 2 3p 6 Kr, 36, krypton : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 ...