Search results
Results from the WOW.Com Content Network
Therefore, the spring constant k, and each element of the tensor κ, is measured in newtons per meter (N/m), or kilograms per second squared (kg/s 2). For continuous media, each element of the stress tensor σ is a force divided by an area; it is therefore measured in units of pressure, namely pascals (Pa, or N/m 2, or kg/(m·s 2).
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
The rate or spring constant of a spring is the change in the force it exerts, divided by the change in deflection of the spring. That is, it is the gradient of the force versus deflection curve . An extension or compression spring's rate is expressed in units of force divided by distance, for example or N/m or lbf/in.
The damping ratio provides a mathematical means of expressing the level of damping in a system relative to critical damping. For a damped harmonic oscillator with mass m, damping coefficient c, and spring constant k, it can be defined as the ratio of the damping coefficient in the system's differential equation to the critical damping coefficient:
is a constant with units of newton-meters / radian, variously called the spring's torsion coefficient, torsion elastic modulus, rate, or just spring constant, equal to the change in torque required to twist the spring through an angle of 1 radian.
Rate of change of crackle per unit time: the sixth time derivative of position m/s 6: L T −6: vector Pressure gradient: Pressure per unit distance pascal/m L −2 M 1 T −2: vector Temperature gradient: steepest rate of temperature change at a particular location K/m L −1 Θ: vector Torque: τ
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The wave equation in the one-dimensional case can be derived from Hooke's law in the following way: imagine an array of little weights of mass m interconnected with massless springs of length h. The springs have a spring constant of k: