enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov number - Wikipedia

    en.wikipedia.org/wiki/Markov_number

    A Markov number or Markoff number is a positive integer x, y or z that is part of a solution to the Markov Diophantine equation. studied by Andrey Markoff (1879, 1880). The first few Markov numbers are. 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, ... (sequence A002559 in the OEIS)

  3. Schur's inequality - Wikipedia

    en.wikipedia.org/wiki/Schur's_inequality

    In mathematics, Schur's inequality, named after Issai Schur, establishes that for all non-negative real numbers x, y, z, and t>0, with equality if and only if x = y = z or two of them are equal and the other is zero. When t is an even positive integer, the inequality holds for all real numbers x, y and z. When , the following well-known special ...

  4. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    Cartesian coordinate system with a circle of radius 2 centered at the origin marked in red. The equation of a circle is (x − a)2 + (y − b)2 = r2 where a and b are the coordinates of the center (a, b) and r is the radius. Cartesian coordinates are named for René Descartes, whose invention of them in the 17th century revolutionized ...

  5. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    Coordinate system. The spherical coordinate system is commonly used in physics. It assigns three numbers (known as coordinates) to every point in Euclidean space: radial distance r, polar angle θ (theta), and azimuthal angle φ (phi). The symbol ρ (rho) is often used instead of r.

  6. Roman surface - Wikipedia

    en.wikipedia.org/wiki/Roman_surface

    The paraboloid y = x z is shown in blue and orange. The paraboloid x = y z is shown in cyan and purple. In the image the paraboloids are seen to intersect along the z = 0 axis. If the paraboloids are extended, they should also be seen to intersect along the lines z = 1, y = x; z = −1, y = −x. The two paraboloids together look like a pair of ...

  7. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    The only difference is that Tait–Bryan angles represent rotations about three distinct axes (e.g. x-y-z, or x-y′-z″), while proper Euler angles use the same axis for both the first and third elemental rotations (e.g., z-x-z, or z-x′-z″). This implies a different definition for the line of nodes in the geometrical construction.

  8. Elementary symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Elementary_symmetric...

    Elementary symmetric polynomial. In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary symmetric polynomials. That is, any symmetric polynomial P is given ...

  9. Diophantine equation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_equation

    In the following Diophantine equations, w, x, y, and z are the unknowns and the other letters are given constants: a x + b y = c {\displaystyle ax+by=c} This is a linear Diophantine equation or Bézout's identity. w 3 + x 3 = y 3 + z 3 {\displaystyle w^ {3}+x^ {3}=y^ {3}+z^ {3}} The smallest nontrivial solution in positive integers is 123 + 13 ...