enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    A Binomial distributed random variable X ~ B(n, p) can be considered as the sum of n Bernoulli distributed random variables. So the sum of two Binomial distributed random variables X ~ B(n, p) and Y ~ B(m, p) is equivalent to the sum of n + m Bernoulli distributed random variables, which means Z = X + Y ~ B(n + m, p). This can also be proven ...

  3. Bernoulli trial - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_trial

    In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted. [1] It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed ...

  4. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    The reciprocal 1/ X of a random variable X, is a member of the same family of distribution as X, in the following cases: Cauchy distribution, F distribution, log logistic distribution. Examples: If X is a Cauchy (μ, σ) random variable, then 1/ X is a Cauchy (μ / C, σ / C) random variable where C = μ2 + σ2. If X is an F (ν1, ν2) random ...

  5. Negative binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Negative_binomial_distribution

    In probability theory and statistics, the negative binomial distribution is a discrete probability distribution that models the number of failures in a sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of successes (denoted ) occurs. [2] For example, we can define rolling a 6 on some ...

  6. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    Probability theory. In probability and statistics, a Bernoulli process (named after Jacob Bernoulli) is a finite or infinite sequence of binary random variables, so it is a discrete-time stochastic process that takes only two values, canonically 0 and 1. The component Bernoulli variables Xi are identically distributed and independent.

  7. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    In statistics, a binomial proportion confidence interval is a confidence interval for the probability of success calculated from the outcome of a series of success–failure experiments (Bernoulli trials). In other words, a binomial proportion confidence interval is an interval estimate of a success probability when only the number of ...

  8. Random variable - Wikipedia

    en.wikipedia.org/wiki/Random_variable

    A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. [1] The term 'random variable' in its mathematical definition refers to neither randomness nor variability [2] but instead is a mathematical function in which.

  9. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    Probability theory. In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability . Less formally, it can be thought of as a model for the set of ...