enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    Pons asinorum. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈpɒnz ˌæsɪˈnɔːrəm / PONZ ass-ih-NOR-əm), Latin for "bridge of asses ", or more descriptively as the isosceles triangle theorem. The theorem appears as Proposition 5 of Book 1 ...

  3. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    The theorem that the base angles of an isosceles triangle are equal appears as Proposition I.5 in Euclid. [51] This result has been called the pons asinorum (the bridge of asses) or the isosceles triangle theorem. Rival explanations for this name include the theory that it is because the diagram used by Euclid in his demonstration of the result ...

  4. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    A similar construction shows AC > DC, establishing the theorem. An alternative proof (also based upon the triangle postulate) proceeds by considering three positions for point B: [10] (i) as depicted (which is to be proved), or (ii) B coincident with D (which would mean the isosceles triangle had two right angles as base angles plus the vertex ...

  5. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Pythagorean theorem. The sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c). In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.

  6. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Heron's formula. A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths ⁠ ⁠ ⁠ ⁠ ⁠ ⁠ Letting ⁠ ⁠ be the semiperimeter of the triangle, the area ⁠ ⁠ is [1] It is named after first-century engineer Heron of Alexandria (or Hero) who ...

  7. Steiner–Lehmus theorem - Wikipedia

    en.wikipedia.org/wiki/Steiner–Lehmus_theorem

    The Steiner–Lehmus theorem, a theorem in elementary geometry, was formulated by C. L. Lehmus and subsequently proved by Jakob Steiner. It states: Every triangle with two angle bisectors of equal lengths is isosceles. The theorem was first mentioned in 1840 in a letter by C. L. Lehmus to C. Sturm, in which he asked for a purely geometric proof.

  8. Lexell's theorem - Wikipedia

    en.wikipedia.org/wiki/Lexell's_theorem

    Lexell's proof by breaking the triangle A ∗ B ∗ C into three isosceles triangles. The main idea in Lexell's c. 1777 geometric proof – also adopted by Eugène Catalan (1843), Robert Allardice (1883), Jacques Hadamard (1901), Antoine Gob (1922), and Hiroshi Maehara (1999) – is to split the triangle into three isosceles triangles with common apex at the circumcenter and then chase angles ...

  9. Angle trisection - Wikipedia

    en.wikipedia.org/wiki/Angle_trisection

    Angle trisection. Angles may be trisected via a neusis construction using tools beyond an unmarked straightedge and a compass. The example shows trisection of any angle θ > ⁠ 3π 4 ⁠ by a ruler with length equal to the radius of the circle, giving trisected angle φ = ⁠θ 3 ⁠. Angle trisection is a classical problem of straightedge and ...