Search results
Results from the WOW.Com Content Network
Making a shallow copy of a const or immutable value removes the outer layer of immutability: Copying an immutable string (immutable(char[])) returns a string (immutable(char)[]). The immutable pointer and length are being copied and the copies are mutable. The referred data has not been copied and keeps its qualifier, in the example immutable.
In computer science, string interning is a method of storing only one copy of each distinct string value, which must be immutable. [1] Interning strings makes some string processing tasks more time-efficient or space-efficient at the cost of requiring more time when the string is created or interned.
For function that manipulate strings, modern object-oriented languages, like C# and Java have immutable strings and return a copy (in newly allocated dynamic memory), while others, like C manipulate the original string unless the programmer copies data to a new string.
Mutable (non-const) operations can then be implemented in such a way that they create new objects instead of modifying the existing ones. This approach is characteristic of functional programming and is also used by the string implementations in Java, C#, and Python. (See Immutable object.)
A violation of this constraint is, for example, defining a mutable point as a subtype of an immutable point. [2] This is a violation of the history constraint, because in the history of the immutable point, the state is always the same after creation, so it cannot include the history of a mutable point in general. Fields added to the subtype ...
In modern standard C++, a string literal such as "hello" still denotes a NUL-terminated array of characters. [1] Using C++ classes to implement a string type offers several benefits of automated memory management and a reduced risk of out-of-bounds accesses, [2] and more intuitive syntax for string comparison and concatenation. Therefore, it ...
In object-oriented programming, "immutable interface" is a pattern for designing an immutable object. [1] The immutable interface pattern involves defining a type which does not provide any methods which mutate state. Objects which are referenced by that type are not seen to have any mutable state, and appear immutable.
In C and C++, volatile is a type qualifier, like const, and is a part of a type (e.g. the type of a variable or field). The behavior of the volatile keyword in C and C++ is sometimes given in terms of suppressing optimizations of an optimizing compiler: 1- don't remove existing volatile reads and writes, 2- don't add new volatile reads and writes, and 3- don't reorder volatile reads and writes.