enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antisymmetric tensor - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_tensor

    Totally antisymmetric tensors include: Trivially, all scalars and vectors (tensors of order 0 and 1) are totally antisymmetric (as well as being totally symmetric). The electromagnetic tensor, in electromagnetism. The Riemannian volume form on a pseudo-Riemannian manifold.

  3. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor. For example, a bilinear form is the same thing as a (0, 2) -tensor; an inner product is an example of a (0, 2) -tensor, but not all (0, 2) -tensors are ...

  4. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    The first index i indicates that the stress acts on a plane normal to the X i-axis, and the second index j denotes the direction in which the stress acts (For example, σ 12 implies that the stress is acting on the plane that is normal to the 1 st axis i.e.;X 1 and acts along the 2 nd axis i.e.;X 2). A stress component is positive if it acts in ...

  5. Block-stacking problem - Wikipedia

    en.wikipedia.org/wiki/Block-stacking_problem

    The first nine blocks in the solution to the single-wide block-stacking problem with the overhangs indicated. In statics, the block-stacking problem (sometimes known as The Leaning Tower of Lire (Johnson 1955), also the book-stacking problem, or a number of other similar terms) is a puzzle concerning the stacking of blocks at the edge of a table.

  6. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    Parts with rotational symmetry, such as wheels, axles, pipes, and pillars, are very common in engineering. Often the stress patterns that occur in such parts have rotational or even cylindrical symmetry. The analysis of such cylinder stresses can take advantage of the symmetry to reduce the dimension of the domain and/or of the stress tensor.

  7. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    The most general linear relation between two second-rank tensors , is = where are the components of a fourth-rank tensor . [1] [note 1] The elasticity tensor is defined as for the case where and are the stress and strain tensors, respectively.

  8. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):

  9. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    Examples: is a model for 3-dimensional space. The metric is equivalent to the standard dot product., =, equivalent to dimensional real space as an inner product space with =. In Euclidean space, raising and lowering is not necessary due to vectors and covector components being the same.