enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the " amount of information " (in units such as shannons ( bits ), nats or hartleys ) obtained about one random variable by observing the other random ...

  3. Contingency table - Wikipedia

    en.wikipedia.org/wiki/Contingency_table

    In other words, the two variables are not independent. If there is no contingency, it is said that the two variables are independent. The example above is the simplest kind of contingency table, a table in which each variable has only two levels; this is called a 2 × 2 contingency table. In principle, any number of rows and columns may be used ...

  4. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points.

  5. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.

  6. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    There are two possible definitions which differ in the ordering of the coefficients: a filter for filtering via discrete convolution or via a matrix-vector-product. The coefficients given in the table above correspond to the latter definition. The theory of Lagrange polynomials provides explicit formulas for the finite difference coefficients. [4]

  7. Pointwise mutual information - Wikipedia

    en.wikipedia.org/wiki/Pointwise_mutual_information

    In statistics, probability theory and information theory, pointwise mutual information (PMI), [1] or point mutual information, is a measure of association. It compares the probability of two events occurring together to what this probability would be if the events were independent .

  8. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    A distinction must be made between (1) the covariance of two random variables, which is a population parameter that can be seen as a property of the joint probability distribution, and (2) the sample covariance, which in addition to serving as a descriptor of the sample, also serves as an estimated value of the population parameter.

  9. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    The Burt table is the symmetric matrix of all two-way cross-tabulations between the categorical variables, and has an analogy to the covariance matrix of continuous variables. Analyzing the Burt table is a more natural generalization of simple correspondence analysis, and individuals or the means of groups of individuals can be added as ...