Search results
Results from the WOW.Com Content Network
The random walker algorithm is an algorithm for image segmentation.In the first description of the algorithm, [1] a user interactively labels a small number of pixels with known labels (called seeds), e.g., "object" and "background".
The random walker algorithm is a segmentation algorithm solving the combinatorial Dirichlet problem, adapted to image segmentation by L. Grady in 2006. [16] In 2011, C. Couprie et al. proved that when the power of the weights of the graph converge toward infinity, the cut minimizing the random walker energy is a cut by maximum spanning forest. [17]
In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...
Split and merge segmentation is an image processing technique used to segment an image. The image is successively split into quadrants based on a homogeneity criterion and similar regions are merged to create the segmented result.
A simple elastic snake is defined by a set of n points for =, …,, the internal elastic energy term , and the external edge-based energy term .The purpose of the internal energy term is to control the deformations made to the snake, and the purpose of the external energy term is to control the fitting of the contour onto the image.
A popular normalized spectral clustering technique is the normalized cuts algorithm or Shi–Malik algorithm introduced by Jianbo Shi and Jitendra Malik, [2] commonly used for image segmentation. It partitions points into two sets ( B 1 , B 2 ) {\displaystyle (B_{1},B_{2})} based on the eigenvector v {\displaystyle v} corresponding to the ...
Region growing is a simple region-based image segmentation method. It is also classified as a pixel-based image segmentation method since it involves the selection of initial seed points. This approach to segmentation examines neighboring pixels of initial seed points and determines whether the pixel neighbors should be added to the region.
In image processing, computer vision and related fields, an image moment is a certain particular weighted average of the image pixels' intensities, or a function of such moments, usually chosen to have some attractive property or interpretation. Image moments are useful to describe objects after segmentation.