Ad
related to: volume to surface area sphere diametergenerationgenius.com has been visited by 100K+ users in the past month
- Grades K-2 Math Lessons
Get instant access to hours of fun
standards-based K-2 videos & more.
- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- Loved by Teachers
Check out some of the great
feedback from teachers & parents.
- Grades K-2 Math Lessons
Search results
Results from the WOW.Com Content Network
For example, a sphere with diameter 1 m has 52.4% the volume of a cube with edge length 1 ... for a given surface area, the sphere is the solid of maximum volume. [3]
The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m -1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus.
Defined by Wadell in 1935, [1] the sphericity, , of an object is the ratio of the surface area of a sphere with the same volume to the object's surface area: where is volume of the object and is the surface area. The sphericity of a sphere is unity by definition and, by the isoperimetric inequality, any shape which is not a sphere will have ...
In mathematics, an n-sphere or hypersphere is an - dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because ...
For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth.
In fluid dynamics, Sauter mean diameter (SMD) is an average measure of particle size. It was originally developed by German scientist Josef Sauter in the late 1920s. [1][2] It is defined as the diameter of a sphere that has the same volume/surface area ratio as a particle of interest. Several methods have been devised to obtain a good estimate ...
In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it. Spherical geometry or spherics (from Ancient Greek σφαιρικά) is the geometry of the two- dimensional surface of a sphere [a] or the n -dimensional surface of higher dimensional spheres.
Equivalent spherical diameter. The equivalent spherical diameter of an irregularly shaped object is the diameter of a sphere of equivalent geometric, optical, electrical, aerodynamic or hydrodynamic behavior to that of the particle under investigation. [1][2][3] The particle size of a perfectly smooth, spherical object can be accurately defined ...
Ad
related to: volume to surface area sphere diametergenerationgenius.com has been visited by 100K+ users in the past month