Search results
Results from the WOW.Com Content Network
A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T 2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2). In its original concept, gravity was a force between ...
t. e. Newton's law of universal gravitation states that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Separated objects attract and are attracted as if all their mass were concentrated ...
Gravitation, also known as gravitational attraction, is the mutual attraction between all masses in the universe. Gravity is the gravitational attraction at the surface of a planet or other celestial body; [6] gravity may also include, in addition to gravitation, the centrifugal force resulting from the planet's rotation (see § Earth's gravity).
Gravitational energy or gravitational potential energy is the potential energy a massive object has due to its position in a gravitational field. It is the mechanical work done by the gravitational force to bring the mass from a chosen reference point (often an "infinite distance" from the mass generating the field) to some other point in the ...
A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe ...
Gravitational acceleration. In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag). This is the steady gain in speed caused exclusively by gravitational attraction. All bodies accelerate in vacuum at the same rate, regardless of the masses or compositions of the ...
In classical mechanics, free fall is any motion of a body where gravity is the only force acting upon it. A freely falling object may not necessarily be falling down in the vertical direction. An object moving upwards might not normally be considered to be falling, but if it is subject to only the force of gravity, it is said to be in free fall ...
The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). [2][3] It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .