Search results
Results from the WOW.Com Content Network
The L-shell, L-value, or McIlwain L-parameter (after Carl E. McIlwain) is a parameter describing a particular set of planetary magnetic field lines. Colloquially, L-value often describes the set of magnetic field lines which cross the Earth's magnetic equator at a number of Earth-radii equal to the L-value. For example, describes the set of the ...
The dipole model of the Earth's magnetic field is a first order approximation of the rather complex true Earth's magnetic field. Due to effects of the interplanetary magnetic field (IMF), and the solar wind, the dipole model is particularly inaccurate at high L-shells (e.g., above L=3), but may be a good approximation for lower L-shells.
The initial theory proposed in 2014 was that—due to the tilt in Earth's magnetic field axis—the planet's rotation generated an oscillating, weak electric field that permeates through the entire inner radiation belt. [22] A 2016 study instead concluded that the zebra stripes were an imprint of ionospheric winds on radiation belts. [23]
Accounting for two states of spin, each n-shell can accommodate up to 2n 2 electrons. In a simplistic one-electron model described below, the total energy of an electron is a negative inverse quadratic function of the principal quantum number n , leading to degenerate energy levels for each n > 1. [ 1 ]
Electron magnetic moment. In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μe) is −9.284 764 6917(29) × 10−24 J⋅T−1. [1]
Earth's magnetic field, predominantly dipolar at its surface, is distorted further out by the solar wind. This is a stream of charged particles leaving the Sun's corona and accelerating to a speed of 200 to 1000 kilometres per second. They carry with them a magnetic field, the interplanetary magnetic field (IMF).
t. e. The demagnetizing field, also called the stray field (outside the magnet), is the magnetic field (H-field) [1] generated by the magnetization in a magnet. The total magnetic field in a region containing magnets is the sum of the demagnetizing fields of the magnets and the magnetic field due to any free currents or displacement currents.
The shape of the magnetic fields of a permanent magnet and an electromagnet are revealed by the orientation of iron filings sprinkled on pieces of paper. A magnetic field (sometimes called B-field[1]) is a physical field that describes the magnetic influence on moving electric charges, electric currents, [2]: ch1 [3] and magnetic materials.