Search results
Results from the WOW.Com Content Network
A map is a function, as in the association of any of the four colored shapes in X to its color in Y In mathematics , a map or mapping is a function in its general sense. [ 1 ] These terms may have originated as from the process of making a geographical map : mapping the Earth surface to a sheet of paper.
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.
In graph-theoretic terms, the theorem states that for loopless planar graph, its chromatic number is ().. The intuitive statement of the four color theorem – "given any separation of a plane into contiguous regions, the regions can be colored using at most four colors so that no two adjacent regions have the same color" – needs to be interpreted appropriately to be correct.
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
A continuous map : [,] is a deformation retraction of a space X onto a subspace A if, for every x in X and a in A, (,) =, (,), (,) =.In other words, a deformation retraction is a homotopy between a retraction and the identity map on X.
In mathematics, a contraction mapping, or contraction or contractor, on a metric space (M, d) is a function f from M to itself, with the property that there is some real number < such that for all x and y in M,
In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.. More formally, let and be open subsets of .A function : is called conformal (or angle-preserving) at a point if it preserves angles between directed curves through , as well as preserving orientation.
A 3-map graph is a planar graph, and every planar graph can be represented as a 3-map graph. Every 4-map graph is a 1-planar graph , a graph that can be drawn with at most one crossing per edge, and every optimal 1-planar graph (a graph formed from a planar quadrangulation by adding two crossing diagonals to every quadrilateral face) is a 4-map ...