Ad
related to: addition modulo 2Education.com is great and resourceful - MrsChettyLife
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Guided Lessons
Search results
Results from the WOW.Com Content Network
In computer science, modular arithmetic is often applied in bitwise operations and other operations involving fixed-width, cyclic data structures. The modulo operation, as implemented in many programming languages and calculators, is an application of modular arithmetic that is often used in this context. The logical operator XOR sums 2 bits ...
Modulo operations might be implemented such that a division with a remainder is calculated each time. For special cases, on some hardware, faster alternatives exist. For example, the modulo of powers of 2 can alternatively be expressed as a bitwise AND operation (assuming x is a positive integer, or using a non-truncating definition):
GF(2) is the unique field with two elements with its additive and multiplicative identities respectively denoted 0 and 1. Its addition is defined as the usual addition of integers but modulo 2 and corresponds to the table below: +
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
This quotient group is isomorphic with the set {,} with addition modulo 2; informally, it is sometimes said that / equals the set {,} with addition modulo 2. Example further explained... Let γ ( m ) {\displaystyle \gamma (m)} be the remainders of m ∈ Z {\displaystyle m\in \mathbb {Z} } when dividing by 2 {\displaystyle 2} .
It can be viewed as a form of addition modulo 2. The power set of any set becomes an abelian group under the operation of symmetric difference, with the empty set as the neutral element of the group and every element in this group being its own inverse .
The set of integers modulo 2 has just two elements; the addition operation it inherits is known in Boolean logic as the "exclusive or" function. A similar "wrap around" operation arises in geometry, where the sum of two angle measures is often taken to be their sum as real numbers modulo 2π.
Polynomial addition modulo 2 is the same as bitwise XOR. Since XOR is the inverse of itself, polynominal subtraction modulo 2 is the same as bitwise XOR too. Multiplication is similar (a carry-less product): (+) (+) = + + + ().
Ad
related to: addition modulo 2Education.com is great and resourceful - MrsChettyLife