enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    Modulo operations might be implemented such that a division with a remainder is calculated each time. For special cases, on some hardware, faster alternatives exist. For example, the modulo of powers of 2 can alternatively be expressed as a bitwise AND operation (assuming x is a positive integer, or using a non-truncating definition):

  3. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  4. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer. If a primitive root modulo m exists, then there are exactly φ ( φ ( m )) such primitive roots, where φ is the Euler's totient function.

  5. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Modulo 2 there is only one coprime congruence class, [1], so (/) is the trivial group. Modulo 4 there are two coprime congruence classes, [1] and [3], so ( Z / 4 Z ) × ≅ C 2 , {\displaystyle (\mathbb {Z} /4\mathbb {Z} )^{\times }\cong \mathrm {C} _{2},} the cyclic group with two elements.

  6. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...

  7. GF (2) - Wikipedia

    en.wikipedia.org/wiki/GF(2)

    GF(2) can be identified with the field of the integers modulo 2, that is, the quotient ring of the ring of integers Z by the ideal 2Z of all even numbers: GF(2) = Z/2Z. Notations Z 2 and may be encountered although they can be confused with the notation of 2-adic integers.

  8. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  9. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a primitive root modulo 2 p k. [14] Finding primitive roots modulo p is also equivalent to finding the roots of the (p − 1)st cyclotomic polynomial modulo p.