Search results
Results from the WOW.Com Content Network
A truth table is a structured representation that presents all possible combinations of truth values for the input variables of a Boolean function and their corresponding output values. A function f from A to F is a special relation , a subset of A×F, which simply means that f can be listed as a list of input-output pairs.
1110 2 XOR 1001 2 = 0111 2 (this is equivalent to addition without carry) As noted above, since exclusive disjunction is identical to addition modulo 2, the bitwise exclusive disjunction of two n -bit strings is identical to the standard vector of addition in the vector space ( Z / 2 Z ) n {\displaystyle (\mathbb {Z} /2\mathbb {Z} )^{n}} .
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.
They do not behave like the integers 0 and 1, for which 1 + 1 = 2, but may be identified with the elements of the two-element field GF(2), that is, integer arithmetic modulo 2, for which 1 + 1 = 0. Addition and multiplication then play the Boolean roles of XOR (exclusive-or) and AND (conjunction), respectively, with disjunction x ∨ y ...
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true.
GF(2) is the unique field with two elements with its additive and multiplicative identities respectively denoted 0 and 1. Its addition is defined as the usual addition of integers but modulo 2 and corresponds to the table below: +
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.