enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrical impedance - Wikipedia

    en.wikipedia.org/wiki/Electrical_impedance

    In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]

  3. Output impedance - Wikipedia

    en.wikipedia.org/wiki/Output_impedance

    The output impedance is defined as this modeled and/or real impedance in series with an ideal voltage source. Mathematically, current and voltage sources can be converted to each other using Thévenin's theorem and Norton's theorem. In the case of a nonlinear device, such as a transistor, the term "output impedance" usually refers to the effect ...

  4. Thévenin's theorem - Wikipedia

    en.wikipedia.org/wiki/Thévenin's_theorem

    As originally stated in terms of direct-current resistive circuits only, Thévenin's theorem states that "Any linear electrical network containing only voltage sources, current sources and resistances can be replaced at terminals A–B by an equivalent combination of a voltage source Vth in a series connection with a resistance Rth."

  5. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.

  6. Series and parallel circuits - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_circuits

    Series and parallel circuits. A series circuit with a voltage source (such as a battery, or in this case a cell) and three resistance units. Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology.

  7. Norton's theorem - Wikipedia

    en.wikipedia.org/wiki/Norton's_theorem

    In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.

  8. Electrical resistance and conductance - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistance_and...

    The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is electrical conductance, measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm (Ω ...

  9. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    For a parallel RLC circuit, the Q factor is the inverse of the series case: [21] [20] = = = [22] Consider a circuit where R, L and C are all in parallel. The lower the parallel resistance, the more effect it will have in damping the circuit and thus the lower the Q. This is useful in filter design to determine the bandwidth.