enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  3. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  4. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    The remainder, as defined above, is called the least positive remainder or simply the remainder. [2] The integer a is either a multiple of d, or lies in the interval between consecutive multiples of d, namely, q⋅d and (q + 1)d (for positive q). In some occasions, it is convenient to carry out the division so that a is as close to an integral ...

  5. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    explicitly showing its relationship with Euclidean division. However, the b here need not be the remainder in the division of a by m. Rather, a ≡ b (mod m) asserts that a and b have the same remainder when divided by m. That is, a = p m + r, b = q m + r, where 0 ≤ r < m is the common remainder.

  6. The monkey and the coconuts - Wikipedia

    en.wikipedia.org/wiki/The_monkey_and_the_coconuts

    So if we began in modulo class –4 nuts then we will remain in modulo class –4. Since ultimately we have to divide the pile 5 times or 5^5, the original pile was 5^5 – 4 = 3121 coconuts. The remainder of 1020 coconuts conveniently divides evenly by 5 in the morning. This solution essentially reverses how the problem was (probably) constructed.

  7. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...

  8. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  9. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    Division-free algorithm — performs matrix reduction to triangular form without any division operation. Fraction-free algorithm — uses division to keep the intermediate entries smaller, but due to the Sylvester's Identity the transformation is still integer-preserving (the division has zero remainder).