enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/HazenWilliams_equation

    Hazen–Williams equation. The Hazen–Williams equation is an empirical relationship which relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [1] such as fire sprinkler systems, [2] water supply networks, and irrigation systems.

  3. Hardy Cross method - Wikipedia

    en.wikipedia.org/wiki/Hardy_Cross_method

    The Hardy Cross method is an application of continuity of flow and continuity of potential to iteratively solve for flows in a pipe network. [1] In the case of pipe flow, conservation of flow means that the flow in is equal to the flow out at each junction in the pipe. Conservation of potential means that the total directional head loss along ...

  4. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Darcy–Weisbach equation. In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.

  5. Allen Hazen - Wikipedia

    en.wikipedia.org/wiki/Allen_Hazen

    Allen Hazen (August 28, 1869 – July 26, 1930) was an American civil engineer and an expert in hydraulics, flood control, water purification and sewage treatment. His career extended from 1888 to 1930, and he is, perhaps, best known for his contributions to hydraulics with the Hazen-Williams equation. Hazen published some of the seminal works ...

  6. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    Pipe network analysis. In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics network, containing several or many interconnected branches. The aim is to determine the flow rates and pressure drops in the individual sections of the network. This is a common problem in hydraulic design.

  7. Hydraulic head - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_head

    The most common equation used to calculate major head losses is the Darcy–Weisbach equation. Older, more empirical approaches are the Hazen–Williams equation and the Prony equation. For relatively short pipe systems, with a relatively large number of bends and fittings, minor losses can easily exceed major losses.

  8. Chézy formula - Wikipedia

    en.wikipedia.org/wiki/Chézy_formula

    The Chézy formula describes mean flow velocity in turbulent open channel flow and is used broadly in fields related to fluid mechanics and fluid dynamics. Open channels refer to any open conduit, such as rivers, ditches, canals, or partially full pipes. The Chézy formula is defined for uniform equilibrium and non-uniform, gradually varied flows.

  9. Hydraulic calculation - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_calculation

    Hydraulic calculations verify that the water flowrate (or water mixed with additives like firefighting foam concentrate) through piping networks for the purpose of suppressing or extinguishing a fire will be sufficient to meet design objectives. The hydraulic calculation procedure is defined in the applicable reference model codes such as that ...