enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...

  3. Riemann–Stieltjes integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Stieltjes_integral

    The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .

  4. Lebesgue–Stieltjes integration - Wikipedia

    en.wikipedia.org/wiki/Lebesgue–Stieltjes...

    Lebesgue–Stieltjes integrals, named for Henri Leon Lebesgue and Thomas Joannes Stieltjes, are also known as Lebesgue–Radon integrals or just Radon integrals, after Johann Radon, to whom much of the theory is due. They find common application in probability and stochastic processes, and in certain branches of analysis including potential theory.

  5. Wallis' integrals - Wikipedia

    en.wikipedia.org/wiki/Wallis'_integrals

    Wallis's integrals can be evaluated by using Euler integrals: Euler integral of the first kind: the Beta function: for Re (x), Re (y) > 0. Euler integral of the second kind: the Gamma function: for Re (z) > 0. If we make the following substitution inside the Beta function: we obtain:

  6. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    e. In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the X axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, is one way to make this concept rigorous and to extend it to more general functions.

  7. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.

  8. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    A summation-by-parts (SBP) finite difference operator conventionally consists of a centered difference interior scheme and specific boundary stencils that mimics behaviors of the corresponding integration-by-parts formulation. [3] [4] The boundary conditions are usually imposed by the Simultaneous-Approximation-Term (SAT) technique. [5]

  9. Integration by parts operator - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts_operator

    Integration by parts operator. In mathematics, an integration by parts operator is a linear operator used to formulate integration by parts formulae; the most interesting examples of integration by parts operators occur in infinite-dimensional settings and find uses in stochastic analysis and its applications.