Search results
Results from the WOW.Com Content Network
In quantum mechanics, an atomic orbital (/ ˈ ɔːr b ɪ t ə l / ⓘ) is a function describing the location and wave-like behavior of an electron in an atom. [1] This function describes an electron's charge distribution around the atom's nucleus , and can be used to calculate the probability of finding an electron in a specific region around ...
These four numbers specify the unique and complete quantum state of any single electron in the atom, and they combine to compose the electron's wavefunction, or orbital. When solving to obtain the wave function, the Schrödinger equation resolves into three equations that lead to the first three quantum numbers, meaning that the three equations ...
The electron probability density for the first few hydrogen atom electron orbitals shown as cross-sections. These orbitals form an orthonormal basis for the wave function of the electron. Different orbitals are depicted with different scale.
In each term of an electron configuration, n is the positive integer that precedes each orbital letter (helium's electron configuration is 1s 2, therefore n = 1, and the orbital contains two electrons). An atom's nth electron shell can accommodate 2n 2 electrons. For example, the first shell can accommodate two electrons, the second shell eight ...
The wave-like behavior of a bound electron is described by a function called an atomic orbital. Each orbital has its own set of quantum numbers such as energy, angular momentum and projection of angular momentum, and only a discrete set of these orbitals exist around the nucleus.
In chemistry, a molecular orbital (/ ɒr b ə d l /) is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region.
Electron configuration, the arrangement of electrons in structures such as atoms or molecules Orbital hybridization , a combining of atomic orbitals to form an equal number of hybrid orbitals when forming certain molecules
When one electron is removed from an sp 3 orbital, resonance is invoked between four valence bond structures, each of which has a single one-electron bond and three two-electron bonds. Triply degenerate T 2 and A 1 ionized states (CH 4 + ) are produced from different linear combinations of these four structures.