Search results
Results from the WOW.Com Content Network
Another equation is needed to relate the pressure difference to the velocity of the flow near the turbine. Here, the Bernoulli equation is used between the field flow and the flow near the wind turbine. There is one limitation to the Bernoulli equation: the equation cannot be applied to fluid passing through the wind turbine.
The total cost curve, if non-linear, can represent increasing and diminishing marginal returns.. The short-run total cost (SRTC) and long-run total cost (LRTC) curves are increasing in the quantity of output produced because producing more output requires more labor usage in both the short and long runs, and because in the long run producing more output involves using more of the physical ...
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
The long-run cost curve is a cost function that models this minimum cost over time, meaning inputs are not fixed. Using the long-run cost curve, firms can scale their means of production to reduce the costs of producing the good. [1] There are three principal cost functions (or 'curves') used in microeconomic analysis:
A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.
This is called Abel's integral equation and allows us to compute the total time required for a particle to fall along a given curve (for which / would be easy to calculate). But Abel's mechanical problem requires the converse – given T ( y 0 ) {\displaystyle T(y_{0})\,} , we wish to find f ( y ) = d ℓ / d y {\displaystyle f(y)={d\ell }/{dy ...
Schwarzschild's equation is the formula by which you may calculate the intensity of any flux of electromagnetic energy after passage through a non-scattering medium when all variables are fixed, provided we know the temperature, pressure, and composition of the medium.
For any curve and two points = and = on this curve, an affine connection gives rise to a map of vectors in the tangent space at into vectors in the tangent space at : =,, and () can be computed component-wise by solving the differential equation = () = () where () is the vector tangent to the curve at the point ().