Search results
Results from the WOW.Com Content Network
A single branch of the complex logarithm. The hue of the color is used to show the argument of the complex logarithm. The brightness of the color is used to show the modulus of the complex logarithm. The real part of log(z) is the natural logarithm of | z |. Its graph is thus obtained by rotating the graph of ln(x) around the z-axis.
A common choice of branch cut is the negative real axis, although the choice is largely a matter of convenience. The logarithm has a jump discontinuity of 2 π i when crossing the branch cut. The logarithm can be made continuous by gluing together countably many copies, called sheets, of the complex plane along the branch cut. On each sheet ...
Any number log z defined by such criteria has the property that e log z = z. In this manner log function is a multi-valued function (often referred to as a "multifunction" in the context of complex analysis). A branch cut, usually along the negative real axis, can limit the imaginary part so it lies between −π and π. These are the chosen ...
However, the important thing to note is that z 1/2 = e (Log z)/2, so z 1/2 has a branch cut. This affects our choice of the contour C. Normally the logarithm branch cut is defined as the negative real axis, however, this makes the calculation of the integral slightly more complicated, so we define it to be the positive real axis.
When the focus is on a single branch, sometimes a branch cut is used; in this case removing the non-positive real numbers from the domain of the function and eliminating as a possible value for Arg z. With this branch cut, the single-branch function is continuous and analytic everywhere in its domain.
Using the former definition above, the dilogarithm function is analytic everywhere on the complex plane except at =, where it has a logarithmic branch point. The standard choice of branch cut is along the positive real axis ( 1 , ∞ ) {\displaystyle (1,\infty )} .
Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.
This is commonly done by introducing a branch cut; in this case the "cut" might extend from the point z = 0 along the positive real axis to the point at infinity, so that the argument of the variable z in the cut plane is restricted to the range 0 ≤ arg(z) < 2π. We can now give a complete description of w = z 1/2.