enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperconjugation - Wikipedia

    en.wikipedia.org/wiki/Hyperconjugation

    Hyperconjugation can be used to rationalize a variety of chemical phenomena, including the anomeric effect, the gauche effect, the rotational barrier of ethane, the beta-silicon effect, the vibrational frequency of exocyclic carbonyl groups, and the relative stability of substituted carbocations and substituted carbon centred radicals, and the thermodynamic Zaitsev's rule for alkene stability.

  3. Cieplak effect - Wikipedia

    en.wikipedia.org/wiki/Cieplak_Effect

    The Cieplak effect relies on the stabilizing interaction of mixing full and empty orbitals to delocalize electrons, known as hyperconjugation. [2] When the highest occupied molecular orbital of one system and the lowest unoccupied molecular orbital of another system have comparable energies and spatial overlap, the electrons can delocalize and sink into a lower energy level.

  4. Gauche effect - Wikipedia

    en.wikipedia.org/wiki/Gauche_effect

    The gauche effect is very sensitive to solvent effects, due to the large difference in polarity between the two conformers.For example, 2,3-dinitro-2,3-dimethylbutane, which in the solid state exists only in the gauche conformation, prefers the gauche conformer in benzene solution by a ratio of 79:21, but in carbon tetrachloride, it prefers the anti conformer by a ratio of 58:42. [9]

  5. Sakurai reaction - Wikipedia

    en.wikipedia.org/wiki/Sakurai_reaction

    As displayed in the scheme, the Hosomi–Sakurai reaction is proposed to give a secondary carbocation intermediate. Secondary carbocations are high in energy, however it is stabilized by the silicon substituent ("β-silicon effect", a form of silicon-hyperconjugation).

  6. Negative hyperconjugation in silicon - Wikipedia

    en.wikipedia.org/wiki/Negative_hyperconjugation...

    Negative hyperconjugation is a theorized phenomenon in organosilicon compounds, in which hyperconjugation stabilizes or destabilizes certain accumulations of positive charge. The phenomenon explains corresponding peculiarities in the stereochemistry and rate of hydrolysis .

  7. Negative hyperconjugation - Wikipedia

    en.wikipedia.org/wiki/Negative_hyperconjugation

    This phenomenon, a type of resonance, can stabilize the molecule or transition state. [2] It also causes an elongation of the σ-bond by adding electron density to its antibonding orbital. [1] Negative hyperconjugation is seldom observed, though it can be most commonly observed when the σ *-orbital is located on certain C–F or C–O bonds ...

  8. Vinyl cation - Wikipedia

    en.wikipedia.org/wiki/Vinyl_cation

    Stabilization is possible because of a good overlap between the C-H bond and the empty p-orbital at C a. Hyperconjugation is evident in all structures because of the adjacent C b-H bond and in the –CH 3 substituent. Enthalpy calculations obtained from the isodesmic reaction are fair accurate and shows good correlation with experimental data.

  9. Markovnikov's rule - Wikipedia

    en.wikipedia.org/wiki/Markovnikov's_rule

    The same is true when an alkene reacts with water in an additional reaction to form an alcohol that involves carbocation formation. The hydroxyl group (OH) bonds to the carbon that has the greater number of carbon-carbon bonds, while the hydrogen bonds to the carbon on the other end of the double bond, that has more carbon–hydrogen bonds.