Search results
Results from the WOW.Com Content Network
Highly reducing metals react directly with alcohols to give the corresponding metal alkoxide. The alcohol serves as an acid, and hydrogen is produced as a by-product. A classic case is sodium methoxide produced by the addition of sodium metal to methanol: [citation needed] 2 CH 3 OH + 2 Na → 2 CH 3 ONa + H 2. Other alkali metals can be used ...
Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. [1] Strong acids catalyze the reaction by donating a proton to the carbonyl group, thus making it a more potent electrophile.
In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. [1] Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds.
Unlike acid-catalyzed ester hydrolysis, it is not an equilibrium reaction and proceeds to completion. Hydroxide ion attacks the carbonyl carbon to give a tetrahedral intermediate, which then expels an alkoxide ion. The resulting carboxylic acid quickly protonates the alkoxide ion to give a carboxylate ion and an alcohol. [1]
The hydroxide anion adds to the carbonyl group of the ester. The immediate product is called an orthoester. Saponification part I. Expulsion of the alkoxide generates a carboxylic acid: Saponification part II. The alkoxide ion is a strong base so the proton is transferred from the carboxylic acid to the alkoxide ion, creating an alcohol:
The Bouveault–Blanc reduction is a chemical reaction in which an ester is reduced to primary alcohols using absolute ethanol and sodium metal. [1] It was first reported by Louis Bouveault and Gustave Louis Blanc in 1903. [2] [3] [4] Bouveault and Blanc demonstrated the reduction of ethyl oleate and n-butyl oleate to oleyl alcohol. [5]
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Sodium ethoxide is commonly used as a base in the Claisen condensation [7] and malonic ester synthesis. [8] Sodium ethoxide may either deprotonate the α-position of an ester molecule, forming an enolate, or the ester molecule may undergo a nucleophilic substitution called transesterification. If the starting material is an ethyl ester, trans ...