enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The word2vec algorithm estimates these representations by modeling text in a large corpus. Once trained, such a model can detect synonymous words or suggest additional words for a partial sentence. Word2vec was developed by Tomáš Mikolov and colleagues at Google and published in 2013.

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  5. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers, models, or metrics that can be used in native workflows in JAX, TensorFlow, or PyTorch — with one codebase." [2] Keras 3 will be the default Keras version for TensorFlow 2.16 onwards, but Keras 2 can still ...

  6. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    ML involves the study and construction of algorithms that can learn from and make predictions on data. [3] These algorithms operate by building a model from a training set of example observations to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.

  7. Edit distance - Wikipedia

    en.wikipedia.org/wiki/Edit_distance

    Given two strings a and b on an alphabet Σ (e.g. the set of ASCII characters, the set of bytes [0..255], etc.), the edit distance d(a, b) is the minimum-weight series of edit operations that transforms a into b. One of the simplest sets of edit operations is that defined by Levenshtein in 1966: [2] Insertion of a single symbol.

  8. Pattern recognition - Wikipedia

    en.wikipedia.org/wiki/Pattern_recognition

    Optical character recognition is an example of the application of a pattern classifier. The method of signing one's name was captured with stylus and overlay starting in 1990. [citation needed] The strokes, speed, relative min, relative max, acceleration and pressure is used to uniquely identify and confirm identity. Banks were first offered ...

  9. Prediction in language comprehension - Wikipedia

    en.wikipedia.org/wiki/Prediction_in_language...

    This poor sensitivity to timing information makes fMRI a less useful technique than EEG or eyetracking for studying linguistic prediction. One exception is an fMRI test of the differences in neural activation between strategic and automatic semantic priming. When the time between the prime and the target word is short (around 150 milliseconds ...