Search results
Results from the WOW.Com Content Network
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011.
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. The exponential of a variable is denoted or , with the two notations used interchangeably.
Bernoulli's inequality can be proved for case 2, in which is a non-negative integer and , using mathematical induction in the following form: we prove the inequality for {,}, from validity for some r we deduce validity for +.
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
The bounds these inequalities give on a finite sample are less tight than those the Chebyshev inequality gives for a distribution. To illustrate this let the sample size N = 100 and let k = 3. Chebyshev's inequality states that at most approximately 11.11% of the distribution will lie at least three standard deviations away from the mean.
In mathematics, the Lebedev–Milin inequality is any of several inequalities for the coefficients of the exponential of a power series, found by Lebedev and Milin and Isaak Moiseevich Milin . It was used in the proof of the Bieberbach conjecture , as it shows that the Milin conjecture implies the Robertson conjecture .
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.