enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') [1] is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths.

  3. List of physics mnemonics - Wikipedia

    en.wikipedia.org/wiki/List_of_physics_mnemonics

    A Magic Triangle image mnemonic - when the terms of Ohm's law are arranged in this configuration, covering the unknown gives the formula in terms of the remaining parameters. It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ.

  4. Källén function - Wikipedia

    en.wikipedia.org/wiki/Källén_function

    The Källén function, also known as triangle function, is a polynomial function in three variables, which appears in geometry and particle physics. In the latter field it is usually denoted by the symbol λ {\displaystyle \lambda } .

  5. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The octant of a sphere is a spherical triangle with three right angles. Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles.

  6. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.

  7. Stewart's theorem - Wikipedia

    en.wikipedia.org/wiki/Stewart's_theorem

    Diagram of Stewart's theorem. Let a, b, c be the lengths of the sides of a triangle. Let d be the length of a cevian to the side of length a.If the cevian divides the side of length a into two segments of length m and n, with m adjacent to c and n adjacent to b, then Stewart's theorem states that + = (+).

  8. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The triangles in both spaces have properties different from the triangles in Euclidean space. For example, as mentioned above, the internal angles of a triangle in Euclidean space always add up to 180°. However, the sum of the internal angles of a hyperbolic triangle is less than 180°, and for any spherical triangle, the sum is more than 180 ...

  9. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    Thales’ theorem: if AC is a diameter and B is a point on the diameter's circle, the angle ∠ ABC is a right angle.. In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle.