Search results
Results from the WOW.Com Content Network
Basics. Molecular orbital diagrams are diagrams of molecular orbital (MO) energy levels, shown as short horizontal lines in the center, flanked by constituent atomic orbital (AO) energy levels for comparison, with the energy levels increasing from the bottom to the top. Lines, often dashed diagonal lines, connect MO levels with their ...
One of several nitrogen oxides, nitrogen dioxide is a reddish-brown gas. It is a paramagnetic, bent molecule with C 2v point group symmetry. Industrially, NO2 is an intermediate in the synthesis of nitric acid, millions of tons of which are produced each year, primarily for the production of fertilizers.
In chemistry, a molecular orbital (/ ɒrbədl /) is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region.
Molecular orbital diagram of dinitrogen molecule, N 2. There are five bonding orbitals and two antibonding orbitals (marked with an asterisk; orbitals involving the inner 1s electrons not shown), giving a total bond order of three. Atomic nitrogen, also known as active nitrogen, is highly reactive, being a triradical with three unpaired electrons.
Walsh diagrams, often called angular coordinate diagrams or correlation diagrams, are representations of calculated orbital binding energies of a molecule versus a distortion coordinate (bond angles), used for making quick predictions about the geometries of small molecules. [1][2] By plotting the change in molecular orbital levels of a ...
In chemistry, molecular orbital theory (MO theory or MOT) is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century. The MOT explains the paramagnetic nature of O 2, which valence bond theory cannot explain. In molecular orbital theory, electrons in a molecule are not ...
The highest occupied orbital energy level of dioxygen is a pair of antibonding π* orbitals. In the ground state of dioxygen, this energy level is occupied by two electrons of the same spin, as shown in the molecular orbital diagram. The molecule, therefore, has two unpaired electrons and is in a triplet state.
Nitrite is an ambidentate ligand and can form a wide variety of coordination complexes by binding to metal ions in several ways. [2] Two examples are the red nitrito complex [Co (NH 3) 5 (ONO)] 2+ is metastable, isomerizing to the yellow nitro complex [Co (NH 3) 5 (NO 2)] 2+. Nitrite is processed by several enzymes, all of which utilize ...