enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Congruum - Wikipedia

    en.wikipedia.org/wiki/Congruum

    An equivalent formulation of this solution, given by Bernard Frénicle de Bessy, is that for the three squares in arithmetic progression , , and , the middle number is the hypotenuse of a Pythagorean triangle and the other two numbers and are the difference and sum respectively of the triangle's two legs. [6]

  3. Square pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Square_pyramidal_number

    All 14 squares in a 3×3-square (4×4-vertex) grid. As well as counting spheres in a pyramid, these numbers can be used to solve several other counting problems. For example, a common mathematical puzzle involves counting the squares in a large n by n square grid. [11] This count can be derived as follows: The number of 1 × 1 squares in the ...

  4. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial x 4 − 1 {\displaystyle x^{4}-1} can be factored as follows:

  5. Sequence - Wikipedia

    en.wikipedia.org/wiki/Sequence

    For example, in this notation the sequence of even numbers could be written as (). The sequence of squares could be written as (). The variable n is called an index, and the set of values that it can take is called the index set.

  6. Latin square - Wikipedia

    en.wikipedia.org/wiki/Latin_square

    A Latin square is said to be reduced (also, normalized or in standard form) if both its first row and its first column are in their natural order. [4] For example, the Latin square above is not reduced because its first column is A, C, B rather than A, B, C. Any Latin square can be reduced by permuting (that is, reordering) the rows and columns ...

  7. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is

  8. Super Bowl Squares: How Much Are Your Numbers Worth? - AOL

    www.aol.com/news/2013-02-01-super-bowl-squares...

    Super Bowl Squares value per square In this example, if a square is worth more than $50, it's better than average. Less, and you probably won't be leaving your Super Bowl party with some extra ...

  9. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube.