enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exception handling syntax - Wikipedia

    en.wikipedia.org/wiki/Exception_handling_syntax

    C does not provide direct support to exception handling: it is the programmer's responsibility to prevent errors in the first place and test return values from the functions. In any case, a possible way to implement exception handling in standard C is to use setjmp/longjmp functions:

  3. Exception handling (programming) - Wikipedia

    en.wikipedia.org/wiki/Exception_handling...

    Since exceptions in C++ are supposed to be exceptional (i.e. uncommon/rare) events, the phrase "zero-cost exceptions" [note 2] is sometimes used to describe exception handling in C++. Like runtime type identification (RTTI), exceptions might not adhere to C++'s zero-overhead principle as implementing exception handling at run-time requires a ...

  4. Exception handling - Wikipedia

    en.wikipedia.org/wiki/Exception_handling

    The first hardware exception handling was found in the UNIVAC I from 1951. Arithmetic overflow executed two instructions at address 0 which could transfer control or fix up the result. [16] Software exception handling developed in the 1960s and 1970s. Exception handling was subsequently widely adopted by many programming languages from the ...

  5. Logic error - Wikipedia

    en.wikipedia.org/wiki/Logic_error

    This computer-programming -related article is a stub. You can help Wikipedia by expanding it.

  6. Error hiding - Wikipedia

    en.wikipedia.org/wiki/Error_hiding

    In this C# example, all exceptions are caught regardless of type, and a new generic exception is thrown, keeping only the message of the original exception. The original stacktrace is lost, along with the type of the original exception, any exception for which the original exception was a wrapper, and any other information captured in the ...

  7. Floating-point error mitigation - Wikipedia

    en.wikipedia.org/wiki/Floating-point_error...

    Variable-length arithmetic operations are considerably slower than fixed-length format floating-point instructions. When high performance is not a requirement, but high precision is, variable length arithmetic can prove useful, though the actual accuracy of the result may not be known.

  8. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...

  9. Overflow flag - Wikipedia

    en.wikipedia.org/wiki/Overflow_flag

    Some architectures may be configured to automatically generate an exception on an operation resulting in overflow. An example, suppose we add 127 and 127 using 8-bit registers. 127+127 is 254, but using 8-bit arithmetic the result would be 1111 1110 binary, which is the two's complement encoding of −2, a negative number. A negative sum of ...