enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...

  3. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    The Encyclopedia of Mathematics [7] defines interval (without a qualifier) to exclude both endpoints (i.e., open interval) and segment to include both endpoints (i.e., closed interval), while Rudin's Principles of Mathematical Analysis [8] calls sets of the form [a, b] intervals and sets of the form (a, b) segments throughout.

  4. Set inversion - Wikipedia

    en.wikipedia.org/wiki/Set_inversion

    In most applications, f is a function from R n to R p and the set Y is a box of R p (i.e. a Cartesian product of p intervals of R). When f is nonlinear the set inversion problem can be solved [1] using interval analysis combined with a branch-and-bound algorithm. [2] The main idea consists in building a paving of R p made with non-overlapping ...

  5. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P such that ′ =. This is called circle inversion or plane inversion.

  6. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    In mathematics, specifically differential calculus, the inverse function theorem gives a sufficient condition for a function to be invertible in a neighborhood of a point in its domain: namely, that its derivative is continuous and non-zero at the point. The theorem also gives a formula for the derivative of the inverse function.

  7. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.

  8. Indicator function - Wikipedia

    en.wikipedia.org/wiki/Indicator_function

    In many cases, such as order theory, the inverse of the indicator function may be defined. This is commonly called the generalized Möbius function, as a generalization of the inverse of the indicator function in elementary number theory, the Möbius function. (See paragraph below about the use of the inverse in classical recursion theory.)

  9. Inverse curve - Wikipedia

    en.wikipedia.org/wiki/Inverse_curve

    The inverse of the curve C is then the locus of P as Q runs over C. The point O in this construction is called the center of inversion, the circle the circle of inversion, and k the radius of inversion. An inversion applied twice is the identity transformation, so the inverse of an inverse curve with respect to the same circle is the original ...