enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hysteresis - Wikipedia

    en.wikipedia.org/wiki/Hysteresis

    The curves form a hysteresis loop. Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are ...

  3. Magnetic hysteresis - Wikipedia

    en.wikipedia.org/wiki/Magnetic_hysteresis

    The downward curve after saturation, along with the lower return curve, form the main loop. The intercepts h c and m rs are the coercivity and saturation remanence. Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it.

  4. Current–voltage characteristic - Wikipedia

    en.wikipedia.org/wiki/Current–voltage...

    Hysteresis vs single-valued: Devices which have hysteresis; that is, in which the current–voltage relation depends not only on the present applied input but also on the past history of inputs, have I–V curves consisting of families of closed loops. Each branch of the loop is marked with a direction represented by an arrow.

  5. Jiles–Atherton model - Wikipedia

    en.wikipedia.org/wiki/Jiles–Atherton_model

    This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. [2] Jiles–Atherton model enables calculation of minor and major hysteresis loops. [1] The original Jiles–Atherton model is suitable only for isotropic materials. [1]

  6. Coercivity - Wikipedia

    en.wikipedia.org/wiki/Coercivity

    Equivalent definitions for coercivities in terms of the magnetization-vs-field (M-H) curve, for the same magnet. Coercivity in a ferromagnetic material is the intensity of the applied magnetic field ( H field) required to demagnetize that material, after the magnetization of the sample has been driven to saturation by a strong field.

  7. Piezoresponse force microscopy - Wikipedia

    en.wikipedia.org/wiki/Piezoresponse_force_microscopy

    A series of hysteresis loops are acquired across the sample surface in order to map the switching characteristics as a function of position. In this way an image representing switching properties such as coercive voltage, remnant polarisation, imprint and work of switching amongst others can be displayed in which each pixel displays the desired ...

  8. Bouc–Wen model of hysteresis - Wikipedia

    en.wikipedia.org/wiki/Bouc–Wen_model_of_hysteresis

    In structural engineering, the Bouc–Wen model of hysteresis is a hysteretic model typically employed to describe non-linear hysteretic systems. It was introduced by Robert Bouc [1] [2] and extended by Yi-Kwei Wen, [3] who demonstrated its versatility by producing a variety of hysteretic patterns. This model is able to capture, in analytical ...

  9. Maximum energy product - Wikipedia

    en.wikipedia.org/wiki/Maximum_energy_product

    The maximum energy product is defined based on the magnetic hysteresis saturation loop (B-H curve), in the demagnetizing portion where the B and H fields are in opposition. It is defined as the maximal value of the product of B and H along this curve (actually, the maximum of the negative of the product, −BH, since they have opposing signs):