Search results
Results from the WOW.Com Content Network
Electromyography is the measurement and analysis of the electrical activity in skeletal muscles. This technique is useful for diagnosing the health of the muscle tissue and the nerves that control them. [8] EMG measures action potentials, called Motor Unit Action Potentials (MUAPs), created during muscle contraction.
EMG can also be used for indicating the amount of fatigue in a muscle. The following changes in the EMG signal can signify muscle fatigue: an increase in the mean absolute value of the signal, increase in the amplitude and duration of the muscle action potential and an overall shift to lower frequencies. Monitoring the changes of different ...
In general, fatigue protocols have shown increases in EMG data over the course of a fatiguing protocol, but reduced recruitment of muscle fibers in tests of power in fatigued individuals. In most studies, this increase in recruitment during exercise correlated with a decrease in performance (as would be expected in a fatiguing individual).
In their 1982 paper, Burke and colleagues propose that the small cell size and high surface-to-volume ratio of S motor units allows for greater metabolic activity, optimized for the "highest duty cycles" of motoneurons, while other motor unit types may be involved in "lower duty cycles." However, they state that the evidence is not conclusive ...
Intraoperative neurophysiological monitoring (IONM) or intraoperative neuromonitoring is the use of electrophysiological methods such as electroencephalography (EEG), electromyography (EMG), and evoked potentials to monitor the functional integrity of certain neural structures (e.g., nerves, spinal cord and parts of the brain) during surgery.
Deeper areas of contraction can be detected by electromyography (EMG) testing, though they can happen in any skeletal muscle in the body. Fasciculations arise as a result of spontaneous depolarization of a lower motor neuron leading to the synchronous contraction of all the skeletal muscle fibers within a single motor unit.
Hyperkinesia refers to an increase in muscular activity that can result in excessive abnormal movements, excessive normal movements, or a combination of both. [1] Hyperkinesia is a state of excessive restlessness which is featured in a large variety of disorders that affect the ability to control motor movement, such as Huntington's disease .
In neuroscience, the lateralized readiness potential (LRP) is an event-related brain potential, or increase in electrical activity at the surface of the brain, that is thought to reflect the preparation of motor activity on a certain side of the body; in other words, it is a spike in the electrical activity of the brain that happens when a person gets ready to move one arm, leg, or foot.