Search results
Results from the WOW.Com Content Network
The maturation of complex analysis led to general techniques for conformal mapping, where points of a flat surface are handled as numbers on the complex plane.While working at the United States Coast and Geodetic Survey, the American philosopher Charles Sanders Peirce published his projection in 1879, [2] having been inspired by H. A. Schwarz's 1869 conformal transformation of a circle onto a ...
A circle with non-zero geodesic curvature is called a small circle, and is analogous to a circle in the plane. A small circle separates the sphere into two spherical disks or spherical caps, each with the circle as its boundary. For any triple of distinct non-antipodal points a unique small circle passes through all three.
Stereographic projection of the unit sphere from the north pole onto the plane z = 0, shown here in cross section. The unit sphere S 2 in three-dimensional space R 3 is the set of points (x, y, z) such that x 2 + y 2 + z 2 = 1.
In cartography, a conformal map projection is one in which every angle between two curves that cross each other on Earth (a sphere or an ellipsoid) is preserved in the image of the projection; that is, the projection is a conformal map in the mathematical sense. For example, if two roads cross each other at a 39° angle, their images on a map ...
They are written in terms of longitude (λ) and latitude (φ) on the sphere. Define the radius of the sphere R and the center point (and origin) of the projection (λ 0, φ 0). The equations for the orthographic projection onto the (x, y) tangent plane reduce to the following: [1]
Gnomonic projection of a portion of the north hemisphere centered on the geographic North Pole The gnomonic projection with Tissot's indicatrix of deformation. A gnomonic projection, also known as a central projection or rectilinear projection, is a perspective projection of a sphere, with center of projection at the sphere's center, onto any plane not passing through the center, most commonly ...
At the time of its original publication this book was called encyclopedic, [2] [3] and "likely to become and remain the standard for a long period". [2] It has since been called a classic, [5] [7] in part because of its unification of aspects of the subject previously studied separately in synthetic geometry, analytic geometry, projective geometry, and differential geometry. [5]
Projects the globe onto eight octants (Reuleaux triangles) with no meridians and no parallels. 1909 Cahill's butterfly map: Polyhedral Compromise Bernard Joseph Stanislaus Cahill: Projects the globe onto an octahedron with symmetrical components and contiguous landmasses that may be displayed in various arrangements. 1975 Cahill–Keyes projection