Search results
Results from the WOW.Com Content Network
An ion–dipole force consists of an ion and a polar molecule interacting. They align so that the positive and negative groups are next to one another, allowing maximum attraction. An important example of this interaction is hydration of ions in water which give rise to hydration enthalpy .
In organic chemistry, a dipolar compound or simply dipole is an electrically neutral molecule carrying a positive and a negative charge in at least one canonical description. In most dipolar compounds the charges are delocalized . [ 1 ]
For example, the water molecule (H 2 O) contains two polar O−H bonds in a bent (nonlinear) geometry. The bond dipole moments do not cancel, so that the molecule forms a molecular dipole with its negative pole at the oxygen and its positive pole midway between the two hydrogen atoms. In the figure each bond joins the central O atom with a ...
This contrast is principally because the resulting ion–dipole interactions are significantly stronger than ion-induced dipole interactions, so the heat of solution is higher. When the oppositely charged ions in the solid ionic lattice are surrounded by the opposite pole of a polar molecule, the solid ions are pulled out of the lattice and ...
For example, acetone, the active ingredient in some nail polish removers, has a net dipole associated with the carbonyl (see figure 2). Since oxygen is more electronegative than the carbon that is covalently bonded to it, the electrons associated with that bond will be closer to the oxygen than the carbon, creating a partial negative charge (δ ...
For ionic compounds made of molecular cations and/or anions, there may also be ion-dipole and dipole-dipole interactions if either molecule has a molecular dipole moment. The theoretical treatments described below are focused on compounds made of atomic cations and anions, and neglect contributions to the internal energy of the lattice from ...
The ammonia-borane adduct (H 3 N → BH 3) is given as a classic example: the bond is weak, with a dissociation energy of 31 kcal/mol (cf. 90 kcal/mol for ethane), and long, at 166 pm (cf. 153 pm for ethane), and the molecule possesses a dipole moment of 5.2 D that implies a transfer of only 0.2 e – from nitrogen to boron.
For example, Na–Cl and Mg–O interactions have a few percent covalency, while Si–O bonds are usually ~50% ionic and ~50% covalent. Pauling estimated that an electronegativity difference of 1.7 (on the Pauling scale) corresponds to 50% ionic character, so that a difference greater than 1.7 corresponds to a bond which is predominantly ionic ...