enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced to the computation of square and cube roots.

  3. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    In mathematics, the concept of irreducibility is used in several ways. A polynomial over a field may be an irreducible polynomial if it cannot be factored over that field. In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial.

  4. Irreducible polynomial - Wikipedia

    en.wikipedia.org/wiki/Irreducible_polynomial

    In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.

  5. Algebraic function - Wikipedia

    en.wikipedia.org/wiki/Algebraic_function

    In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of ...

  6. Absolute irreducibility - Wikipedia

    en.wikipedia.org/wiki/Absolute_irreducibility

    In mathematics, a multivariate polynomial defined over the rational numbers is absolutely irreducible if it is irreducible over the complex field. [1] [2] [3] For example, + is absolutely irreducible, but while + is irreducible over the integers and the reals, it is reducible over the complex numbers as + = (+) (), and thus not absolutely irreducible.

  7. Hilbert's irreducibility theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_irreducibility...

    To see this, choose a monic irreducible polynomial f(X 1, ..., X n, Y) whose root generates N over E. If f(a 1, ..., a n, Y) is irreducible for some a i, then a root of it will generate the asserted N 0.) Construction of elliptic curves with large rank. [2] Hilbert's irreducibility theorem is used as a step in the Andrew Wiles proof of Fermat's ...

  8. Monic polynomial - Wikipedia

    en.wikipedia.org/wiki/Monic_polynomial

    Here are some examples. Every polynomial is associated to a unique monic polynomial. In particular, the unique factorization property of polynomials can be stated as: Every polynomial can be uniquely factorized as the product of its leading coefficient and a product of monic irreducible polynomials.

  9. Eisenstein's criterion - Wikipedia

    en.wikipedia.org/wiki/Eisenstein's_criterion

    The fact that the polynomial after substitution is irreducible then allows concluding that the original polynomial is as well. This procedure is known as applying a shift. For example consider H = x 2 + x + 2, in which the coefficient 1 of x is not divisible by any prime, Eisenstein's criterion does not apply to H.