enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  3. Water–gas shift reaction - Wikipedia

    en.wikipedia.org/wiki/Water–gas_shift_reaction

    Temperature dependence of the free molar (Gibbs) enthalpy and equilibrium constant of the water-gas shift reaction. With increasing temperature, the reaction rate increases, but hydrogen production becomes less favorable thermodynamically [5] since the water gas shift reaction is moderately exothermic; this shift in chemical equilibrium can be ...

  4. Q10 (temperature coefficient) - Wikipedia

    en.wikipedia.org/wiki/Q10_(temperature_coefficient)

    The effects of temperature on enzyme activity. Top - increasing temperature increases the rate of reaction (Q 10 coefficient). Middle - the fraction of folded and functional enzyme decreases above its denaturation temperature. Bottom - consequently, an enzyme's optimal rate of reaction is at an intermediate temperature.

  5. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...

  6. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  7. Collision theory - Wikipedia

    en.wikipedia.org/wiki/Collision_theory

    The weak temperature dependence of the preexponential factor is so small compared to the exponential factor that it cannot be measured experimentally, that is, "it is not feasible to establish, on the basis of temperature studies of the rate constant, whether the predicted T ⁠ 1 / 2 ⁠ dependence of the preexponential factor is observed ...

  8. Reaction rate - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate

    Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]

  9. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics, which deals with the direction in which a reaction occurs but in itself tells nothing about its rate.