Ads
related to: multiplicative group of complex numbers worksheet
Search results
Results from the WOW.Com Content Network
Outside of number theory the simpler notation is often used, though it can be confused with the p-adic integers when n is a prime number. The multiplicative group of integers modulo n, which is the group of units in this ring, may be written as (depending on the author) (/), (/), (/), (/) (for German Einheit, which translates as unit), , or ...
The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.
The circle group forms a subgroup of , the multiplicative group of all nonzero complex numbers. Since C × {\displaystyle \mathbb {C} ^{\times }} is abelian , it follows that T {\displaystyle \mathbb {T} } is as well.
A multiplicative character (or linear character, or simply character) on a group G is a group homomorphism from G to the multiplicative group of a field , usually the field of complex numbers. If G is any group, then the set Ch(G) of these morphisms forms an abelian group under pointwise multiplication.
In mathematics, a multiplicative character (or linear character, or simply character) on a group G is a group homomorphism from G to the multiplicative group of a field , usually the field of complex numbers. If G is any group, then the set Ch(G) of these morphisms forms an abelian group under pointwise multiplication.
The 2-adic integers, with selected corresponding characters on their Pontryagin dual group. In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group (the multiplicative group of complex numbers of modulus one), the finite abelian groups (with the discrete topology), and ...
The n th roots of unity form under multiplication a cyclic group of order n, and in fact these groups comprise all of the finite subgroups of the multiplicative group of the complex number field. A generator for this cyclic group is a primitive n th root of unity. The n th roots of unity form an irreducible representation of any cyclic group of ...
n, and is called the group of units modulo n, or the group of primitive classes modulo n. As explained in the article multiplicative group of integers modulo n, this multiplicative group (× n) is cyclic if and only if n is equal to 2, 4, p k, or 2 p k where p k is a power of an odd prime number.
Ads
related to: multiplicative group of complex numbers worksheet