enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    The extension to multiple and/or vector-valued predictor variables (denoted with a capital X) is known as multiple linear regression, also known as multivariable linear regression (not to be confused with multivariate linear regression). [10] Multiple linear regression is a generalization of simple linear regression to the case of more than one ...

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  4. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    The general linear model is a generalization of multiple linear regression to the case of more than one dependent variable. If Y , B , and U were column vectors , the matrix equation above would represent multiple linear regression.

  5. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  6. Multivariate statistics - Wikipedia

    en.wikipedia.org/wiki/Multivariate_statistics

    Multivariate regression attempts to determine a formula that can describe how elements in a vector of variables respond simultaneously to changes in others. For linear relations, regression analyses here are based on forms of the general linear model. Some suggest that multivariate regression is distinct from multivariable regression, however ...

  7. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  8. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    In a linear regression, the true parameters are =, = which are reliably estimated in the case of uncorrelated and (black case) but are unreliably estimated when and are correlated (red case). Perfect multicollinearity refers to a situation where the predictors are linearly dependent (one can be written as an exact linear function of the others ...

  9. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    In other words, a simple linear regression model might, for example, predict that a given randomly sampled person in Seattle would have an average yearly income $10,000 higher than a similar person in Mobile, Alabama. However, it would also predict, for example, that a white person might have an average income $7,000 above a black person, and a ...