enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric operands.

  3. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that (). [1]In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n.

  4. Dirichlet character - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_character

    Any character mod a prime power is also a character mod every larger power. For example, mod 16 [ 32 ] 1 3 5 7 9 11 13 15 χ 16 , 3 1 − i − i 1 − 1 i i − 1 χ 16 , 9 1 − 1 − 1 1 1 − 1 − 1 1 χ 16 , 15 1 − 1 1 − 1 1 − 1 1 − 1 {\displaystyle {\begin{array}{|||}&1&3&5&7&9&11&13&15\\\hline \chi _{16,3}&1&-i&-i&1&-1&i&i&-1 ...

  5. Zolotarev's lemma - Wikipedia

    en.wikipedia.org/wiki/Zolotarev's_lemma

    For example, multiplication by 2 on Z/21Z has cycle decomposition (0)(1,2,4,8,16,11)(3,6,12)(5,10,20,19,17,13)(7,14)(9,18,15), so the sign of this permutation is (1)(−1)(1)(−1)(−1)(1) = −1 and the Jacobi symbol (2|21) is −1. (Note that multiplication by 2 on the units mod 21 is a product of two 6-cycles, so its sign is 1.

  6. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in 7 + 8 = 15, but 15:00 reads as 3:00 on the clock face because clocks "wrap around" every 12 hours and the hour number starts again at zero when it reaches 12. We say that 15 is congruent to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 83 ...

  7. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    The set {3,19} generates the group, which means that every element of (/) is of the form 3 a × 19 b (where a is 0, 1, 2, or 3, because the element 3 has order 4, and similarly b is 0 or 1, because the element 19 has order 2).

  8. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  9. Hensel's lemma - Wikipedia

    en.wikipedia.org/wiki/Hensel's_lemma

    The derivative is still 0 modulo 2, so a priori we don't know whether we can lift them to modulo 8, but in fact we can, since g(1) is 0 mod 8 and g(3) is 0 mod 8, giving solutions at 1, 3, 5, and 7 mod 8. Since of these only g(1) and g(7) are 0 mod 16 we can lift only 1 and 7 to modulo 16, giving 1, 7, 9, and 15 mod 16. Of these, only 7 and 9 ...