Search results
Results from the WOW.Com Content Network
Vladimir Karapetoff (1944) "The special theory of relativity in hyperbolic functions", Reviews of Modern Physics 16:33–52, Abstract & link to pdf; Lanczos, Cornelius (1949), The Variational Principles of Mechanics, University of Toronto Press, pp. 304– 312 Also used biquaternions. French, Anthony (1968). Special Relativity. W. W. Norton ...
Taiji relativity is a formulation of special relativity developed by Jong-Ping Hsu and Leonardo Hsu. [1] [11] [12] [13] The name of the theory, Taiji, is a Chinese word which refers to ultimate principles which predate the existence of the world. Hsu and Hsu claimed that measuring time in units of distance allowed them to develop a theory of ...
The book is a mathematical introduction to various theoretical physics concepts, such as principle of least action, Lagrangian mechanics, Hamiltonian mechanics, Poisson brackets, and electromagnetism. [3] It is the first book in a series called The Theoretical Minimum, based on Stanford Continuing Studies courses taught by world renowned ...
The third book, Special Relativity and Classical Field Theory: The Theoretical Minimum (September 26, 2017), [30] introduces readers to Einstein's special relativity and Maxwell's classical field theory. The fourth book in the series, General Relativity: The Theoretical Minimum was published in January 2023.
The relativistic Lagrangian can be derived in relativistic mechanics to be of the form: = (˙) (, ˙,). Although, unlike non-relativistic mechanics, the relativistic Lagrangian is not expressed as difference of kinetic energy with potential energy, the relativistic Hamiltonian corresponds to total energy in a similar manner but without including rest energy.
To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.
In general relativity, Regge calculus is a formalism for producing simplicial approximations of spacetimes that are solutions to the Einstein field equation. The calculus was introduced by the Italian theoretician Tullio Regge in 1961.
In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend ...