enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weighted median - Wikipedia

    en.wikipedia.org/wiki/Weighted_median

    The lower weighted median is 2 with partition sums of 0.49 and 0.5, and the upper weighted median is 3 with partition sums of 0.5 and 0.25. In the case of working with integers or non-interval measures, the lower weighted median would be accepted since it is the lower weight of the pair and therefore keeps the partitions most equal. However, it ...

  3. Hodges–Lehmann estimator - Wikipedia

    en.wikipedia.org/wiki/Hodges–Lehmann_estimator

    For two sets of data with m and n observations, the set of two-element sets made of them is their Cartesian product, which contains m × n pairs of points (one from each set); each such pair defines one difference of values. The Hodges–Lehmann statistic is the median of the m × n differences. [4]

  4. Median - Wikipedia

    en.wikipedia.org/wiki/Median

    Calculating the median in data sets of odd (above) and even (below) observations. The median of a set of numbers is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as the “middle" value.

  5. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  6. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Bootstrapping can be interpreted in a Bayesian framework using a scheme that creates new data sets through reweighting the initial data. Given a set of data points, the weighting assigned to data point in a new data set is =, where is a low-to-high ordered list of uniformly distributed random numbers on [,], preceded by 0 and succeeded by 1.

  7. Medoid - Wikipedia

    en.wikipedia.org/wiki/Medoid

    Fourth, the medoid set is optimized via an iterative process. Note that a medoid is not equivalent to a median, a geometric median, or centroid. A median is only defined on 1-dimensional data, and it only minimizes dissimilarity to other points for metrics induced by a norm (such as the Manhattan distance or Euclidean distance).

  8. Quantile regression - Wikipedia

    en.wikipedia.org/wiki/Quantile_regression

    Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.

  9. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    The maximum likelihood method weights the difference between fit and data using the same weights . The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability ...