Search results
Results from the WOW.Com Content Network
Quaternion variable theory differs in some respects from complex variable theory. For example: The complex conjugate mapping of the complex plane is a central tool but requires the introduction of a non-arithmetic, non-analytic operation.
The conjugate of a quaternion corresponds to the conjugate transpose of the matrix. By restriction this representation yields an isomorphism between the subgroup of unit quaternions and their image SU(2). Topologically, the unit quaternions are the 3-sphere, so the underlying space of SU(2) is also a 3-sphere.
The product of a quaternion with its conjugate is its common norm. [63] The operation of taking the common norm of a quaternion is represented with the letter N. By definition the common norm is the product of a quaternion with its conjugate. It can be proven [64] [65] that common norm is equal to the square of the tensor of a quaternion ...
The quaternion formulation of the composition of two rotations R B and R A also yields directly the rotation axis and angle of the composite rotation R C = R B R A. Let the quaternion associated with a spatial rotation R is constructed from its rotation axis S and the rotation angle φ this axis. The associated quaternion is given by,
The quaternion group has the unusual property of being Hamiltonian: Q 8 is non-abelian, but every subgroup is normal. [4] Every Hamiltonian group contains a copy of Q 8. [5] The quaternion group Q 8 and the dihedral group D 4 are the two smallest examples of a nilpotent non-abelian group.
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
As a quaternion consists of two independent complex numbers, they form a four-dimensional vector space over the real numbers. The multiplication of quaternions is not quite like the multiplication of real numbers, though; it is not commutative – that is, if p and q are quaternions, it is not always true that pq = qp.
Cayley Q8 graph of quaternion multiplication showing cycles of multiplication of i (red), j (green) and k (blue). In the SVG file, hover over or click a path to highlight it. All of the Clifford algebras Cl p , q ( R {\displaystyle \mathbb {R} } ) apart from the real numbers, complex numbers and the quaternions contain non-real elements that ...